If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100X^2-500X+9=0
a = 100; b = -500; c = +9;
Δ = b2-4ac
Δ = -5002-4·100·9
Δ = 246400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{246400}=\sqrt{1600*154}=\sqrt{1600}*\sqrt{154}=40\sqrt{154}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-500)-40\sqrt{154}}{2*100}=\frac{500-40\sqrt{154}}{200} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-500)+40\sqrt{154}}{2*100}=\frac{500+40\sqrt{154}}{200} $
| 8k+5=2k+21 | | x=2x^2+15-8 | | -16x^2+112x+70=0 | | 0=12x^2-50 | | 107/x=12/48 | | -(9x-5)-(2x-6)+8=-5(x-1)-(9x+4)+3 | | x+2/2=x+5/4 | | 9(x+6)+2=9x+2 | | 14+84/3h=18 | | 6=3(x-7)/2 | | -2(7x-3)=48 | | -7(4x-3)=-35 | | 6x+4=8x-6) | | 123/x=3 | | 5x+24=6x-6 | | 3/4(28x+20)-16=-1/3(6x-18) | | 3t+5=27-5 | | 7(x+6)=4(x-(6-x) | | 20x-(5x-9)=24 | | 5c-2c+3=7c+c-12 | | 2(4k-1)=5(k-1) | | 3x+3x+x+10+30=180 | | 3x+6=x-11 | | 0.11v=3.10 | | 12a=14a=4 | | b+5=187 | | k+974=999 | | k+46=729 | | 276=j-34 | | f-728=269 | | v-204=751 | | 132=g+106 |